A Fresh Look into Hydraulic Fracturing

In Gasland (2010), a man lights his tap water on fire; his bitterness is mixed with images of desolate drill sites and weary faces. Though dramatic, is this scene a fair criticism of the practice? Opponents spit out the word– fracking, a word almost as ugly as the visions of uprooted landscapes and the plight of victims powerless against Big Energy yet again. For a few moments, set aside visceral reactions and quick emotion and gut-appeal. Take a glance at hydraulic fracturing, an industry slogging through the politics of energy and environmental protection.


Hydraulic fracturing has been around for a long time. It was patented in 1949 and only recently has been combined with other technologies to tap previously inaccessible shale gas. The process involves the injection of a mixture of water, proppant such as sand, and chemicals into an oil or gas well.

The fluid is pumped into the horizontal bore several thousand feet under the ground and creates fractures in the surrounding shale rock. The proppant enters these cracks, “propping” them open after the water flows back out. The chemicals do many different things, such as gelling the water on its entry and reducing friction.

The shale clays under scrutiny for natural gas previously could not be used because although they held large reserves of natural gas (the Marcellus Formation in Appalachia alone holds 84 trillion cubic feet), shale is not naturally very permeable.

Now, there are a multitude of previously inaccessible natural gas sources that can be accessed, such as black shales, coal seams, tight sandstones, and deep brine aquifers. Proponents nod to these sources and note their relatively small extraction risk compared to offshore drilling, arctic drilling, or ultra deep drilling.

In 1990, the United States produced the energy equivalent of 70 quadrillion Btu (British thermal unit, equal to 1055 joules). That number remained steady through 2006, at 69.4 quadrillion Btu. That number increased as hydraulic fracturing — combined with horizontal drilling and other new technologies –became more widespread. In 2010, 74.712 quadrillion Btu were produced; in 2011, 78.091 Btu. A large part of this increase has stemmed from natural gas production; 19 quadrillion Btu from natural gas in 2006 increased to 23.6 quadrillion Btu in 2011.

The United States has become the second largest natural gas producer in the world, just behind Russia.


In 2011, the U.S. produced 8.5 trillion cubic feet of natural gas from shale gas wells; at $4.24 per thousand cubic feet, which yielded a direct value of $36 billion. Citibank estimates that rising domestic shale oil and gas production, through reduction of oil imports and retention of “petro-dollars” in country, will reduce the current-account deficit by 1.2.-2.4% of GDP from the current value of 3%.

While other industries have spluttered in the wake of the 2008 recession, oil and gas have remained a powerhouse of employment, with the number of employees at the end of 2012 at its highest since 1987.

Through both direct (employment) and indirect (influx of people and money) economic impact, multiplier effects echo throughout local economies. Land prices surge in a state after fracking is legalized, and the high prices affect all landowners’ wealth and consumption.

Nowhere is this more apparent than in North Dakota—its per capita GDP rocketed from $34,000 to $55,000 after less than a decade of fracking, demonstrating the effect of the drilling in the Bakken formation. Apparently the North Dakotan luxury car dealers are doing a tidy business.

Gas is also the cleanest fossil fuel when burned. No sulfur, mercury, and ash are produced after combustion. No cracking or refining is required, lowering processing costs. It releases low quantities of nitrous oxides, ozones, and complex hydrocarbons, avoiding the creation of photochemical smog. Finally, it releases the lowest amounts of carbon dioxide per btu of any fossil fuel; it releases ½ of the carbon dioxide per Btu of coal and 2/3 of oil.

Finally, hydraulic fracturing has directly impacted the energy race balance between the U.S. and other countries. Between 2007 and 2011, natural gas imports in the U.S. decreased by 25%, while petroleum imports dropped 15.4% from 2005 to 2011. The Energy Information Administration predicts that by 2020, the U.S. will become a net exporter of natural gas. This, thankfully, will ease tension between the Americans and the Chinese for limited Middle Eastern natural gas resources. Countries such as Iran will also be limited in their ability to use energy diplomacy in negotiations.


Fracking does come with its cons—seismic activity, water resource risks, waste management, and extraction infrastructure, just to name a few. However, it is important to distinguish between definitive negative consequences and the assessment of risk.

Fracking’s consequences are well-defined. Each well requires 3-4 million gallons of water, 2/3 to ¾ of which is consumed and cannot be reused. Each well produces huge quantities of drill cuttings—hundreds and hundreds of tons of earth removed from thousands of feet underground to the surface.

However, many of the other environmental costs are measured in terms of risk. To be pedantic, one may define risk as the probability of the consequence multiplied with the severity of the consequence itself. Thus, though there exists risks of water quality degradation, toxic trace elements inside the earth making their way into water supplies, and even seismic activity, many of these risks only are realized through improper management of drill sites and lack of foresight regarding waste management. Like other risky fuel extraction processes such as deepwater drilling, appropriate safety processes simply have to be implemented.


Globally, we use roughly 113,900 terawatt hours of fossil energy per year, the equivalent of 6020 nuclear plants (14 times the number in operation today). As countries such as China and India raise their standards of living, their individual citizens have increasingly come to expect the amenities of the modern world.

In essence, all forms of energy production have environmental consequences. Waste-water disposal issues plague almost all energy production; for example, there exists a percentage of gasoline stations that routinely suffer leaks that leach benzene into the water supply.

Like it or not, the world needs energy. In light of this, hydraulic fracturing should be considered with a scientific, rational eye. Rather than demonizing fracking and instinctively rallying against a new technology, it should be considered a component of a complex solution to an enormous problem– the problem of supplying energy to a bright and tech-hungry world.

The author is deeply grateful for the guidance of Professors Devon Renock and Mukul Sharma of the Dartmouth Earth Sciences Department throughout his research project investigating the clay microstructures of Marcellus Shale.